Proof

Let € be any positive number. Choose k

such that ak-e S a=1lim a
k

0

%
s f(ck) where

k’

- s = i 2
bk €Es<b I;m bk for k ko. Then ek+1

f(c) = Vei-cl] ;:”2 + (a+€) + c(b+e) + ce d.
for ¢ € [IIAH-I,” A-lll]. Consider two cases.

Case (i). Assume that e 2 2|(A-1|](b+€)/(1 - ZIIA‘IIId), ¥k 2 k. We show

that £ is decreasing for ¢ =2 0. 1Indeed,

-
-1 7 If -1l 7|
f'(c)= +b+e+deksf'(0)- e +b+e+~dek.
2wie | Ty P .
Since de, - ||rk|F s (% - ——-l-—i>e Wt (1-2d||A-1||)e < -(b+e), f'(c) =0
k 2 -1 -1 k 2
"k 2/ a™" |l 2]ja™7|

we get £'(c) S 0. Thus £(c) s £(||al™) = /ei- 151/ 1] alparercorer/ | alke /Il All -
stnce V2| LB/l all s VA"t e, we ge

(3.17) rrl

'-1
S lan e + (a+e) + (b+o)/ || All + e dfta]l .

Note that [ek} is a nonincreasing sequence and

Tme s (a+ e+ @ro/|lal)/@- A" - d/]lal),
k

T —— T —

gince 1 = Jlan' T 2 1/(2») we finally get

3.18) Time, <8, & 2ua + e+ p+a)/|[al)/ 1 - 200/ || a]l).
k




Case (ii). Assume there exists k; such that ekl < 2||A-1||(b+e)/(1-2[|A-1||d) < B,

We inductively prove that

(3.19) e, S 1.5 8, k2 k. : |

This holds for k = kl. Suppose first that ey satisfies (3.19) and addition-

ally e, 2 30. From (3.17) we get

€p1 SVI-n e +a+ e+ bro)/||All+ e d/]| Al < e = 1.5 8.
1f ey < 30 then
<e 4+a+ €+ (b+°)J]A-1il+ IIA-IH e d =
Skl k s &

(L+dn/||A]]) + (@a+ e+ (b+e)/ || ]| )= = Fo(l + d=/ || Aj|

+.5(1 = 2d4/ff alf)) = 1.5 3.

Hence, in all cases we proved that' lim e
k
we get (3.16). This completes the proof. B

X s 1.5 30. Letting ¢ tend to :ero

From Lemmas 3.1 and 3.2 we immediately conclude the asymptotic behavior

of the sequence {;n} computed by Algorithm 3.1.

Iheorem 3.1

s

1f 3 2.6 #(Cy + 2¢, + 8) < 1 then Algorithm 3.1 computes the sequence
{;k} such that

— 178 o 3(5C1+1) NS o
(3.20) lim A" "0l § — fla® 'Ilim %l -

EPENT SV WL INEISIRER W




3.8

Proof i*
Suppose first that there exists k, such that I rk0|| s ¢l all |l ;kOH Cy-

Then Algorithm 3.1 yields ;i = X for i 2 kO' From (3.3) and (3.4) we get
: 0

—_— .12~ = /2 - = -1/2 - -
, , I e R P A R P U R W BT

1/2 1/2 ) — -
e 22 || Y 1T 1%

which obviously proves (3.20).

Hence we can now assume that || ;k” > ¢llall - |l ;k“ Cy» ¥k. Applying
1/2 - 3/2y =
Lemma 3.2 with & = ¢l aY2[ - |50, b, = cll a¥ 2]l | %]l 5¢ ana
d = ¢|| all (c;+2¢,+8) we get (3.20) from Lemma 3.1. u

Theorem 3.1 states that if k is large and || ;ﬁ(” =Tim ]l;kll then the
k

computed ;k approximates 2 with the error

1/2

@.2n [aY2E D1 il a2 7 ) c

where C = 3(5C1+1) + 0(C). Note that (3.21) does not imply the numerical

- /9=
stability of Algorithm 3.1 since we have || A1/2|| I| || instead of HAI" zxk” ;
From (3.21) we get
- - 1/2. -
Il %,-<ll la™ =l 1l x|l
| (3.22) =SB < ox __W?:"}_ ¢ = ¢ 2.
} =0 7% |

This means that the relative error of ;k in the A-norm depends at worst on

Cu3/2. However if || A1/2H ;k” = || Al/z;k” then Algorithm 3.1 is numerically

stable in the A-norm.

We pass to results for the spectral norm. From (3.21) we have




1530 a2 11

Il ll i

(%, -2)
k I < ,A3,/2

(3.23) C.

However if

-

(3.26) | Al/z(xk-;) [l =] Al/z” [l %, ==l

then we get numerical stability in the spectral norm. Note that (3.24) will

n

often hold. For instance, let §k-3 =i CjEj
. j=1 1/2 g
of A. Suppose that cj = ¢ (or cj =¢) for all j. Then !IA d (xk-q)H =

where Sj are the eigenvectors

n 1/2

1/2 & 2 V2= = 1/2

[|a™ <]l lc](i_ /A ) > and, [[ a7 7] || x =3l = |a¥ 7] [c|+a and these
=l

two quantities differ at most by a factor of .h and (3.24) holds.

- -

-t
For the residual vector T = Axk - b we get

| 4%, -5
a2 a2 & - |

3.2 || 7l = & Hall Ixdl e = sefiajl fi = i c.

Numerical tests confirm that the residual vectors sometimes depends ou i.

This means that Algorithm 3.1 is not well-behaved. However if

.k 1/2 <« = -1/
N2 -8l = a2 & -2 /11472

-
then the residual vector T depends at

/

worst on in 2.
Numerical stability and/or well-behaved property may be achieved by the

use of iterative refinement even if the residuals are computed in single pre-

cision. From Theorems 3.1 and 4.3 in Jankowski and Wozniakowski [77] it

follows that Algorithm 3.1 with iterative refinement in single precision is

numerically stable whenever gx3’2c <1 and it is well-behaved whenever :nz

is at most of order unity.




3.10

We summarize the properties of Algorithm 3.1,

Corollary 3.1

Algorithm 3.1 constructs an approximation ;k such that

Y2 &2 || = oell a2 15l e
153l < o35 )l c
8% Bl < cell all 1 % lf o

where C = 3(5C;+1) + 0(Q). Furthermore if {|A1/2[|||§k||a il AI/Z;kllthen the

algorithm is numerically stable in the A-norm and if ]|A1/2|l;k-alla llAl/z(Ek-E)l

then the algorithm is numerically stable in the spectral norm. [ |
Corollary 3.1 summarizes the numerical properties of the steepest descent

algorithm. It shows that the algorithm may be neither well-behaved nor numer-

ically stable. However the algorithm is guaranteed to compute an approxima-
tion with a relative error of order at most Qns/z. If the problem is not too

ill-conditioned this is a satisfactory result.
We end this section by a remark concerning the gradient algorithms for
B=IorB= AZ. They differ from Algorithm 3.1 by different computations of

Cx in k3.5). Based on proof techniques similar to those used here it is pos-

sible to show that there exists an index k such that

182G 2| = oxll 8Y2) 1% )l e

1% -3ll < ol 8Y201 11 8™Y2) 1 R )l e,
%3l < el all 15l ¢

for a certain C = C(n). This shows that the best estimates are obtained in

the 'matural'" norm of the algorithm (i.e., in the B-norm) and that the residual

vectors may depend on (u for every choice of B.

i adianine

i L S SN b M A




4, ROUND-OFF ERROR ANALYSIS OF A CLASS OF CONJUGATE GRADIENT ALGORITHMS
We deal with the conjugate gradient iteration for B = A which generates

the sequence :;k} as follows.

- -

L LW T e

(4.1) -~ SRR [ -
Tl T % e e T R T B
where
pax: (rk,rk)
- - b}
k (rk’Ark)
(4.2) "> i
(y,,A(z, -%))
G o e g
. B L
yk! k

See (2.13) and (2.14). It was pointed out to the author by Wieladek [77] that

(4.1) has an interesting local property. Namely, no matter how the vectors

Zx k

error ||§k+143|k is minimized along the line ;k' Note that the cost of one

and ;k are computed, the coefficient u, is chosen in such a way that the
step of the cg iteration depends on how one computes the residual vectors and
the coefficients Cx and W The number of matrix-vector multiplications needed
to perform one step may vary from one to four.

We define a new class of cg aleorithms 3 by the following properties. We
assume that any algorithm o froﬁ the class & computes the vector z by Algorithm

k
3.1. That is

4.3) T

= £l1(ax,-D)

and if ||, ]| > ¢fl all [ % llc, then

M—-———————- i ol i i




4.2

4.4) e = £1((FLTY/ (F,AT)),

(4.5) ‘z‘k = fl&k - oy T).

-

Thus, the computation of z, may require two matrix-vector multiplications.

' There are many different ways of computing the coefficient u One may

k.
use theoretical orthogonality relations (2.15) as well as the direct substi-

tutions for ;k and z, from (4.1). For instance it follows from (2.15) and (4.1)

k
that in theory U > 0. For the sake of generality we do not specify an algo-

rithm for the computation of u . We only assume that an algorithm ¢ computes

Gk such that

e = UL+ ), || <1

k
;k = fl(;k-l - ;k). Note that (4.6) means that G; can be a very crude approxi-

where u = (yk,A(zk-a))/(yk,Ayk) for the computed vectors z, and

mation of Uy . A particular algorithm o for which (4.6) holds is given in

Example 4.1. Knowing Gk we finally compute

-

“.D X = fl(z - 3.

Thus the class § contains algorithms which differ by the computation of .

We are ready to prove

emma 4.1

Let @ be a cg algorithm defined by (4.3) to (4.7). Then

@8 || %3l = 2011 -3l + cllaY 2] 15,01/ -0 .




Proof

From (4.7) we have

Teel = (T + D (7 - W (T + D)yy)

7 :
where D: and D, are diagonal matrices and IID;H S C for i = 6 and 7. Thus

Bl " % % %t B

%.9)
& ., =-&0%F, +[I- (1+D) 1%
e+ 1 k Kk’ k k epi

From (4.6) we get

@10 | s s 2¢he HE vl + <l a2 | % 11 /-0 =

1/2

s 20|z =gl + clla™ % I %, /1 /-0

Let x(¢) = ;k - c;k. Consider f(c) = [];(c)-alL. It is easy to verify that
f(c) < II;k-;lL for |c| < 2|u, | and sign(c) = sign(u,). Since the computed

coefficient Gk satisfies these conditions, (4.9) and (4.10) yield

1
21

1% pp-3lly = 20 [ Z-3]), + clla %l /-0,

This proves (4.8). a
Lemma 4.1 expresses the error of Xpr1 in terms of 2y . Since z, is gbtalned
by one step of the steepest descent algorithm, the error l[;k-;'k satisfies

(3.8). From Lemma 3.2 we immediately get the basic result of this paper.

Theorem 4.1
df
Let B =2 ( V.(C1 + 2C2 + 8) < 1. Any cg algorithm ¢ from the class ¥

-
computes the sequence ka} such that
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(4.11) Tim || Al/z(xk-oz)” < Ca——# Iin || x| . s
k k

Theorem 4.1 states the numerical properties of the cg algorithms from
the class ¢. Since (4.11) is essentially equivalent to (3.20), the discussion
of numerical §roperties of the steepest gradient algorithm is also valid for
the cg algorithms from &. 1In particular we can estimate the error ;k'a and
the residual vector ;k in the spectral norm, as in (3.22) to (3.25). This is

summarized in the following corollary.

Corollary 4.1

Any cg algorithm ¢ from the class & computes an approximation';c.k such that

V2Gal = ol a2 15D e,

I &
1%, -3l < /2| %)l c,
lla%,-3ll < cell all 1%l ¢

where C = 3(5C1 +2) + 0(f). Furthermore if ]]Al/zlllfan =1 Al/za

1/2

']then the
algorithm o is numericélly stable in the A-norm and if || A llll;k';” =
||A1/2(;#-;)H then the algorithm ¢ is stable in the spectral ﬁorm. ®
Corollary 4.l assures that the algorithm ¢ computes ;k with the relative
error in the spectral norm depending at worst on CH3/2. The residual vector
has the spectral norm of order at most (#. We repeat that the algorithm o
with iterative refinement in single pregision is numerically stable whenever

¢

C <1 and well-behaved whenever QKZ is at most of order unity.

We now give an example of an algorithm o which satisfies (4.6).




Example 4.1 d

Let ;g and ;k-l be the computed vectors and ;;. ;k-l the corresponding

residual vectors.

Let ;k = fl(A?k) be the computed vector which is used for

the computation of ke

We propose the following algorithm for the computation of U . Let

w, = fl((yk,rk - ckvk)),
w, = fl((yk’rk-l - T+ ckvk)).

Thus the computation of w1 and v, does not require further matrix-vector multi-

Plications. Repeating a part of the analysis of Section 3 it is possible to

show that
1T OeAGED) + sy, s | S Cllall 150 15l e, |
W = GiohTy + sy, [ay| = Al 50 1%l e,

where c3 ES Cl+.1 and Ca 2= 201+1. From this we get

w

w—; = u s b, e | g cllall 7 IR €/ wy | + ¢/ vy

This suggests the following algorithm for the computation of Gk’

1 A ISRl ey oy, oyl < 1
Gk =

L 0 otherwise.

Hence, (4.6) is satisfied. Note that o, 0 means that O 2 = fl(xk-ckrk)
is obtained by one step of the steepest descent algorithm. This can be inter-

preted as the initialization of the cg algorithm from the vector ;k'




4.6

It may also be observed that the vectors ;k and ;k need not be stored.

-

One step of the algorithm can be performed having five vectors ;k’ Xeo1? ;&.

L and ;k = A?# in storage and using two matrix-vector multiplications.

We have performed many numerical tests using this algorithm. In most

cases the algorithm was well-behaved in the spectral norm. However, in a
| " few cases (about five percent) numerical tests experimentally confirmed the
sharpness of the error bounds in Corollary 4.1. .

¢
We end this section by a remark on the cg algorithms for B = I and B = Az.

Based on the res&lts of Section 3 and assuming that the computed coefficient
G = u (1 + bu) where [su | S1andu = 3, B(z,-@)/ (3, ,By,) for the
computed vectors ;k and ;&, it is possible to prove that there exists an
index k such that the computed ;k satisfies

1/2 - - 1/2 -

I8Y2& 311 < oull 3V2)] 17 M e,
- - 1/2 -1/2 -
53l = ol 820 1872 17 ) e,

| . T AW EAT

for a certain constant C = C(n). Note that for B = I we conclude the numerical

stability of the minimum error algorithm. A detailed analysis for the minimal

residual method, B = A2, may be found in Wieladek [78].




5.1

5. FINAL COMMENTS

We have shown that the relative error of the computed vector ;k by a cg
algorithm from % depends at worst on CK3/2. Since for many practical cases
the required accuracy is larger than gn3/2 this is a quite satisfactory
result.

As we mentioned before we have not succeeded in analyzing classical cg
algorithms. However, we believe that at least some of them have similar num-
erical properties.

We want to pose another problem of practical interest connected with tche
numerical properties of cg algorithms. We know that in theory the sequence
{;k} approximates the solution 2 with the best possible speed of convergence
in the class (2.5). TIs this still true in the presence of rounding errors?

It is important to know the speed of convergence of the computed sequence

f;k} and to see how much of the theoretical optimality continues to hold in fl.
We observe experimentally that the computed sequence initially approximates 2
at least as fast as the Chebyshev iteration, i.e.,

ll;k-alk S2[(/m - 1)/ (W + 1)]kll;0-3|k. Furthermore in many cases the error
Il;k-alk is significantly less than the above bound. Therefore we propose the

following conjecture.

Conjecture 5.1

There exists a cg algorithm which computes the sequence {;k} such that
—t — k — —
(5.1 || x-al|, s max{gx|| or”AC, 20 = 1/ ¢+ 1T xo-a(L‘}

for all k where C = C(n). =

k.




Thus, (5.1) means that as long as II;k-GIL is greater than gul|3|LC,
; we have at least Chebyshev speed of convergence. For large k, (5.1) means

numerical stability in the A-norm.
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APPENDIX

We describe numerical tests of the Concus, Golub and O'Leary [76] conjugate

gradient algorithm defined as follows:

L]

0" a given approximation

e (rk,rk)
k =
() »AT))
- - _1
w. = 1 (rk’rk) ck . w, =1
e e e ’
k+1 (rk-l’rk-l) -1 Yk 1

el T Rl e O R T Ry %, 7 D,
for 'k = 0,100 .
We tested this algorithm for the matrix A = (I - 2; ;T)D(I - 2w ;T) where
v, I ;1.” = 1, was a vector produced by a subroutine which generates random
numbers and D = diag(kl,lz,...,?\n) was a diagonal matrix with Xi > 0. We
chose n € [50,200] for different distributions of )\i varying the condition

number from 102 to 108. We defined Ki as

(i) ki = a + (1-a)(i-1)/(n-1) for a positive small a,
(1) A =q, A = a+ (1-2)(i-2)/(n=2), 1 = 2,...,n where
0< q K as 1,
(iii) Xi = qn.i for some q < 1.
We computed j iterative steps until the limiting accuracy was achieved.

For ill-conditioned problems with n = 50, j was several thousands. As we




A.2

mentioned in the Introduction the best possible computed approximation had
the relative error of order §K3/2 (where ( equals IO-IA for the CDC 3600
computer used in the experiments) and the residual vector had norm of order
el =l

We also tested the algorithm ¢ described in Example 4.1 for the above
examples. In most cases the algorithm ¢ produced the residual vectors of order
C||a" . Thus it behaved better than the Concus, Golub, 0'Leary algorithm. For

a few cases with eigenvalues distributed as in (iii) and with initial error
n

xo-a | chj such that |c,| > |c2| > e Icnl, the algorithm ¢ produced
j=1

the residual vectors of order Qn” a” .




ACKNOWLEDGMENTS

I wish to express my gratitude to J. F. Traub and R. Bjdrk for many

valuable comments on the manuscript. I also thank my colleagues M. Jankowski,
Z. Kacewicz, A. Kielbasinski, A. Smoktunowicz and G. Wasilkowski from the
University of Warsaw for stimulating discussions. My special thanks are to

R. Wieladek, Institute of Geophysics of the Polish Academy of Sciences, for

pointing out a property of a cg algorithm which allowed me to analyze the cg

iteration.




T T

BIBLIOGRAPHY

Concus, Golub and O'Leary [76]

Engeli, Ginsburg, Rutishauser and
Stiefel [59]

Hestenes and Stiefel [52]

Jankowski and Wozniakowski [77]

Kielbasinski [73]

Stiefel [58]

Wieladek [77]

Wieladek [78]

Wilkinson [63]

Wilkinson [65]

Concus, P., Golub, G. H. and 0'Leary,

D. P., "A generalized conjugate gradient
method for the numerical solution of el-
liptic partial differential equations,"

in Sparse Matrix Computations, J. R.

Bunch and D. J. Rose, eds., Academic
Press, New York, 1976, 309-332.

Engeli, M., Ginsburg, Th., Rutishauser,
H. and Stiefel, E., Refined Iterative
Methods for Computation of the Solution
and the Eigenvalues of Self-Adjoint
Boundary Value Problems, BirkhHuser
Verlag, Stuttgart, 1959.

Hestenes, M. R. and Stiefel, E., '"Methods
of conjugate gradients for solving linear
systems," J. Res. Nat. Bur., of Standard
49, 1952, 409-436.

Jankowski, M. and Wozniakowski, H.,
"Iterative refinement .implies numerical
stability," Nordisk Tidskr. Informations-
behandling (BIT) 17, 1977, 303-311.

Kielbasinski, A., "An addition algorithm
with corrections and some of its applica-
tions," Mat. Stosowana 1, 1973, 23-41.
(In Polish)

Stiefel, E., "Kernel polynomials in linear
algebra and their numerical applications,'
NBS. Appl. Math., 49, 1958, 1-22.

Wieladek, R., private communication.

Wieladek, R., "Round-off Error Analysis
of the minimal residual method," to
appear in Publications of the Institute
of Geophysics, Polish Academy of Sciences,
PWN, Warsaw, 1978.

Wilkinson, J. M., Rounding Errors in
Algebraic Processes, Prentice Hall,
Englewood Cliffs, NJ, 1963.

Wilkinson, J. M., The Algebraic Eigenvalue
Problem, Clarendon -Press, Oxford, 1965.




WozZniakowski [77]

Wozniakowski [78]

Wozniakowski, H., "Numerical stability
of the Chebyshev Method for the solution
of large linear systems," Numer. Math.
28, 1977, 191-209, PR

WoZniakowski, H., "Round-off error analysis
of iterations for large linear systems;"

Numer. Math. 30, 1978, 301-314.




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

/

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

CMU-CS~-78-153

—

2. GOVT ACCESSION NO.I 3.

RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

CONJUGATE GRADIENT ALEORITHMS

ROUND-OFF ERROR ANALYSIS OF A NEW CLASS OF

-—

TYPE OF REPORT & PERIOD COVERED

Interim

PERFORMING ORG. REPORT NUMBER

7. AUTHOR(9)

H. Wozniakowski

CONTRACT OR GRANT NUMBER(s)

NO0014-76-C-0370

9. PERFORMING ORGANIZATION NAME AND ADORESS
Carnegie-Mellon University

Computer Science Dept. \
Pittsburgh, PA 15213

10.

PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADORESS

Office of Naval Research
Arlington, VA 22217

. REPORT DATE

December 1978

. NUMBER OF PAGES

36

same as above

T4. MONITORING AGENCY NAME & ADDRESS(!! ditferent from Controlling Office)

SECURITY CLASS. (of thie report)

- UNCLASSIFIED

TSe. DECLASSIFICATION, OOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

S Rpprev

~DISTRIZUTION STATEMENT A~

- e
% for public releasey
_ Distubution Unlimited <

ks

:

ez —

.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, il dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side if neceseary and Identity by block number)

EDITION OF 1 NOV €3 IS OBSOLETE
S/N 0102-014+ 6601 |

DD 73k 1473

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




<LCURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When D.Mn Entered)




